
�

DFD DEMYSTIFIED

�

DFD Demystified
As computer technology develops, so does the software which depends on
this technology. Years ago computers were limited to a physical memory of
�6 MB. This meant that instrument samples had to be rather small or lim-
ited. If you were lucky you could have five samples per instrument! As you
can imagine, transposing one sample two octaves does not result in realistic
sounding instruments. Thankfully those days are behind us and we no longer
live with the limitations that kept samplers from realistic instrument playback
using sample-based technology.

Nowadays it isn’t unrealistic for a personal computer to accept up to 4 GB (or
sometimes more) of physical memory. However, most of us are still stuck with
that � or � GB max limitation whether it be a laptop for live gig or an older
desktop. Whatever the case, there always seems to be the problem that there
is never enough memory. As sampler instruments become more and more
realistic, their physical size, measured in mega- or even gigabytes, also grows.
Often, the physical size of all samples in one instrument exceeds the amount
of available system memory. Even if you have 4GB installed in your machine,
your operating system will allocate at least a few hundred megabytes (often
more, and you slowly approach your limits of how many instruments you can
load into physical memory. This is where DFD comes into play.

What is DFD?
DFD stands for “direct from disk“ and is a technique for playing back large
and very large instruments and samples without loading them entirely into
RAM. In fact, only the first portion of each sample is loaded into RAM per-
manently; the rest is read from the computer’s hard disk while playing the
instrument. RAM is able to react virtually instantly, delivering the first portion
of any sample the user requests, while the computer goes to fetch the next
portion of that sample from the hard disk.

With DFD switched on, we can load samples with up to � Gigabytes each – and
we can load quite a lot of them even with moderately equipped machines.
Later, we’ll learn how things work together, how much RAM we actually need,
and how we have to set up our buffer sizes.

�

Theoretical background
It is beneficial to understand how streaming works if we want to achieve the
best possible performance out of our hard- and software.

So why do we need RAM at all, if we can fetch things directly from the hard
disk? The answer is: we can’t. At least not as quickly as we’d need to. If we
strike a note on our keyboard, we expect to hear sound immediately. To be
precise, “immediately“ is impossible in the universe as we know it because
all sound takes time to travel through air, through converters, through cabling,
and so on, but we still expect something which sounds “immediate“ to our
ears, which would be somewhere in the range of � – �0 milliseconds. You’ll
probably know this value – it‘s called “latency“ and it also serves as a mark
of how good your audio interface . Some of the best ones have latencies down
to �.5 msec). Ok, so we need to hear something a few milliseconds after the
key is pressed. In short, there is no hard disk which is that quick (the very
fastest disks available – designed to work in database servers – get down to
about 4 msec). So the only way to solve the problem is to load the first por-
tion of each sample in RAM (which does have the ability to deliver the sample
virtually instantly) to give the hard disk a chance to fetch the next portion of
the sample as it needs to be played.

Illustrative example for streaming one sample
Let’s assume that you have a container which holds water. This container
has a hole which allows the water to flow out of it on a continual basis.
Using a bucket, your job is to fill the container with water so that it doesn’t
go empty.

If you are slow, then having more water in the container from the start will
aid you in delivering the next bucket. With less water in the beginning, you
will have to deliver the next bucket faster to keep the container from going
empty.

However, the initial water level is not the only factor here. It would also follow
that if the bucket were larger, you could carry more water and thus make less
trips, with an obvious point that this bucket also takes longer to fill. On the
contrary, a smaller bucket will require more trips, but fills quickly.

Add more buckets to the picture (one for each note played) and you’ll quickly
see how speed in general becomes a major factor.

4

How does this relate to DFD?
In the world of DFD, the container is your DFD Voice memory. Initial water
levels can be associated with the preload buffer. The bucket is one channel
buffer, while the bucket’s capacity is your channel buffer size.

If these terms confuse you, then read on.

Technical background

The Preload Buffer
One preload buffer is necessary for every single sample in an instrument.
This is because the performer may elect to play any key on the keyboard,
and KONTAKT has no way of knowing which one it will be before it’s actually
played.

Consider an instrument made up of �00 distinct samples and a preload
buffer size of �9�kb; we’ll end up with an instrument which requires �7.5
megabytes of preload buffer. Keep in mind, that the actual size of the samples
does not matter. It’s the same regardless of whether they are � Gigabyte or
�00kb each.

in the above instrument you see the preload buffer uses 10.87 MB

in KONTAKT’s main display you see the preload memory total for all instruments in this in-
stance.

5

So now we have our first simple formula for used instrument memory:
number of samples in an instrument * preload buffer size = used instrument
memory

Translation: used instrument memory is the amount of RAM it takes to load
the first portion of every sample in the instrument into RAM. Often, it’s a
small fraction of the total memory that would be taken up if every single entire
sample was loaded into RAM.

When you load an instrument, preload RAM is allocated based on the instru-
ment’s preload buffer setting. This can be found (and adjusted as necessary)
within the instrument’s Instrument Options dialog.

Also, in KONTAKT �.�, you may override individual instruments’ settings with
a global preload buffer setting.

The preload buffer setting is specifying how much of each sample you want
to preload into RAM. As the preloaded portion of the sample(s) being played
is playing back, the hard disk has already begun fetching the next portion of
the sample(s) being played. This amount of time (often a fraction of a second)
depends directly on the amount of memory we reserve for the first part of the
sample (the preload buffer size).If that buffer is large, it is sufficient to play
back for a longer time, which makes the hard disk’s job much easier.

6

If that buffer is short, the hard disk will have to work harder and quicker, but
will save more RAM. So obviously there is a tradeoff here. On one hand it’s
possible to use relaxed settings which are easy on the hard drive but take up
larger amounts of RAM. On the other hand, it’s possible to use such short
preload times that the hard drive isn’t able to deliver the samples fast enough.
Polyphony also figures in; if the hard drive has to fetch a few samples at a
time, it may work fine, but if it has to fetch hundreds of samples at the same
time (for example, in a full orchestral sample library), it may get tricky. Every
users’ hardware and performance needs are different, so there are no one-
size-fits-all answers. However, we have some more guidelines to share.

The Channel Buffer
In order to continue a voice, the DFD system will continually fetch the next
buffer for a voice and put it into a dedicated RAM area, from which KONTAKT
will read the samples. The dedicated RAM area (the container) is reserved by
KONTAKT at startup and its size is based on two DFD settings:

channel buffer size and # reserved channel buffers

7

Since these buffers are voice dependent, and one voice in KONTAKT can
occupy up to �6 channels, they are called channel buffers.

How many channel buffers do we need?
That’s relatively easy: it depends on how many voices we plan to play simul-
taneously. If we have a maximum polyphony of – say – �00 voices, we need
�00 of these buffers. The size of each channel buffer (called channel buffer
size) will determine how quickly the next portion of the sample is fetched.

Note: A stereo voice will use � of these buffers, while a 5.� voice will
use 6 of them. This is an important factor when setting up the number
of reserved channel buffers.

Knowing this we arrive at another formula which accounts for DFD voice
memory (Engine tab):

reserved channel buffers x channel buffer size = Total DFD memory
It is important not to confuse this memory total with the memory usage display
in the KONTAKT instrument panel for example. They are two values which in
part make up for the amount of system memory KONTAKT will allocate when
running with loaded instruments.

Putting it all together
Now that we know almost everything about the theoretical basics behind DFD,
we come to the following conclusions as far as memory is concerned:

�. We need a bunch of preload buffers, as many as we
have samples loaded.

�. We need channel buffers, precisely as many as
the voices we want to play.

�. We can adjust each of the buffers‘ sizes independently
to match our requirements and memory.

Additionally, it’s important to remember that:

• Channel buffers are always there, regardless if anything’s
loaded or not.

• Preload buffers can become quite numerous, if the loaded instrument(s)
contain many samples. Preload memory consumption derives directly
from the number of samples used, so it might be necessary to set the
preload buffer size quite low, if the loaded instruments are large in
terms of sample count and installed memory is limited.

�

• DFD voice memory is allocated on a per-instance basis. It is shared by
all the instruments loaded into one instance of KONTAKT.

Combining the illustrative example and our theoretical knowledge would allow
us to derive at the following:

The larger the bucket and the more voices being played, the longer it will
take to fill the buckets with water, i.e. fetch the next channel buffers. If you
want to play lots of notes (high polyphony), this could mean that filling the
buckets for all these notes might take so long that it will not be done in time.
This could result in a DFD overload.

Naturally, it might help to reduce the bucket (channel buffer) size here, but
there is a limit: the smaller the bucket, the earlier the next channel buffers
have to be fetched again. In this case, the seek time of the hard drive will
have more effect on the performance of the DFD.

9

Other considerations
Obviously, with the vast amount of system configurations and individual needs
we cannot give a “magic number;” however here are some general guidelines
which should help to get you achieving better performance on your com-
puter.

Hardware Basics

The hard drive
Of course, The most critical part is the hard disk, and obviously we can gain a
lot by choosing the fastest hard disk we can get. “Fast“ in the hard disk world
has basically two dimensions: transfer bandwidth and access time.

Although transfer bandwidth is an important factor, access time can be even
more important. Current �.5 inch desktop hard disks get values of about 40
megabytes transfer bandwidth per second and an average access time of about
10 ms. 40 MBs transfer bandwidth would be sufficient for about 200 – 250
stereo voices @ 44.�kHz / �6Bit. But unfortunately, there’s still the access
time to consider. Access time is the average time that is needed to address
a randomly chosen target position on the hard disk (from any other previous
position). And in fact, that’s exactly what is happening when it comes to DFD:
whenever several voices are playing simultaneously, many different (virtually
randomly spread) data portions must be retrieved as quickly as possible.

Another point about access time is the fact that it cannot be scaled, as can
be the transfer rate. By using cheap and popular RAID arrays, the transfer
rate can easily be raised to almost any degree, but access time will stay ap-
proximately the same, even if we combine 4 or more drives. So we come to
the following, very important conclusion: If you plan to use large libraries,
look for a hard disk with a really good access time.

Most desktop disk drives, as stated previously, are 7�00 rpm devices and
deliver access times of about �0 msec. But if you want to get high polyphony
(�50 – �50 stereo voices) from large libraries, that may not be good enough.
In such cases, you’ll need a faster drive. Such drives are used for example in
database servers and usually run at �0,000 or even �5,000 rpm (and they are
more expensive, unfortunately). These drives achieve access times down to 4
– 5 msec. The Western Digital “Raptor“ is an example of a modern �0,000
rpm drive with such access times. If you are a high-end user and use huge
libraries and high polyphony, you’ll probably want to use a drive like this – or
even two of them in a RAID configuration.

�0

Hard disk interface
Nowadays there’s hardly any difference (for streaming purposes) between
interface standards like ATA, SCSI, FireWire or SATA. They are all able to
transmit the data faster than any hard disk can deliver the data. Still, there
might be differences in the way the hard disk is connected: the best pos-
sible performance is generally achieved with the disk being attached to the
main internal connector. That does not mean that an external Firewire disk
will not function as well, but there are cases where that would be true: on
the PC side, Firewire (or RAID) controllers are often attached to the PCI bus,
which also holds the sound card. Cheap adapters and/or bad drivers can
in some situations have a bad influence on DFD performance and produce
sonic artifacts. Use high-quality adapters and put drives on dedicated busses
whenever possible.

Buffer sizes
The next topic is buffer sizes: we’ve seen in the above theoretical example
that larger buffers can relieve pressure from the hard disk, hence improving
both performance and polyphony. In fact, large buffers can (to some extent)
compensate for slow access times. It’s not a simple “more buffer, more
voices“ relationship. There are situations where raising buffer sizes helps
performance to a certain point and then decreases afterwards. A “best for
everyone“ setting does not exist, so a little research is still required for each
individual situation.

Memory
We’ve seen that we need quite a lot of memory, and our memory requirements
increase substantially if we want to use instruments with many samples. We’ll
end up with many preload buffers, and they can add up considerably. The OS
uses RAM, as does your host sequencer and any other programs, plug-ins,
and various extensions you may be running.

How much memory do we need? The answer would be, “the more, the
better,” especially when it comes to large libraries. RAM is a crucial re-
source. Again, it largely depends on what instruments you want to use. The
DFD control panel will show you how much total DFD memory your chan-
nel buffer configuration takes and in the instrument header you’ll see how
much the single instruments take. Adding this will give you an impression.
Of course there is a lot of additional demand for RAM (the operating system
itself, the sequencer, other software instruments, etc.). As a hint for memory
requirements we could state the following:

��

• 5�� Megabytes can be considered minimum for any decent audio
system

• � Gigabyte is a good value for a powerful all round system and should
serve well for most standard DFD applications

• � Gigabyte would make a high-end system useable with large and
high-end libraries.

• 4 Gigabyte is actually the limit for any �� bit application. To this
date nooperating system even allows a single application this total
amount.

Last, but not least...

Know what resources your computer has available
Ok, so you aren’t a technical wizard. It doesn’t matter. If you are using a
computer for music, then you should know at least the basics. That includes
knowing how to diagnose available system resources.

Both PC and Mac utilize an advanced virtual memory handling system which
can cause sample playback issues if available memory is not monitored cor-
rectly.

PC: control-alt-delete, opens the Windows Task Manager. Here you can see the
system-wide memory usage, including individual program amounts.

Mac: Applications / Utilities / Activity Manager. Here you can see how much free
memory is available to KONTAKT. For more on this topic please check our online
OS X tutorial. http://www.nativeinstruments.de/index.php?id=niosxtut_us

Experiment with various settings
For those of you have no playback problems, then this shouldn’t apply to you.
If you experience any sort of playback trouble, then the DFD settings could be
responsible. Keep in mind that things in this area are very hardware contingent.
The only way you are going to find the “sweet spot” for your computer is by
trial and error, and remember: if it isn’t broken, don’t try and fix it.

http://www.nativeinstruments.de/index.php?id=niosxtut_us

��

1. Check the instrument preload buffer.
 If your hard disk is slower, around 4�00 or 5400 rpm, then increasing the
preload buffer could make a difference. This will give DFD more headroom
to do its job. It will also require more RAM to get the job done. Remember
this is on a -per sample- basis. So if your thousand layer Grand Piano has a
�40kb preload buffer, then you will lose RAM pretty quickly, just by loading
the instrument.

2. Determine how many voices you need to play.
You should know roughly how many voices you wish to get out of KONTAKT.
This isn’t necessarily a must for the beginning of your projects, but as things
develop you may want to adjust DFD settings according to your project size
and voice count. Now that you know what the DFD settings mean, take a look
at them. Do you really need to playback �0�4 stereo voices in one instance?
Just because this option exists doesn’t mean that your setup can handle it.
The KONTAKT engine is prepared to handle such voice counts, but only if the
computer can provide the resources. Keep in mind that if you require more
voices than set reserved channel buffers, you will get errors.

3. More is not better.
A collective mistake is often made by users who think that more is better.
While this may be true for lots of things in life, it is not for DFD settings.

Whether you are in the Easy or Expert mode, be aware that moving the sliders
to the extreme right WILL allocate a lot of system memory to DFD. If you have
that extra memory, great! If things are tight, then this is especially trouble-
some in the event that this amount of memory is not available to KONTAKT.
The best thing to do is move the slider a bit to the right, then try playback at
your desired polyphony. For large projects, with more KONTAKT instances,
DFD Voice memory is allocated on a per instance basis. This means that if
you assign 4�0 MB to DFD in Easy mode, � KONTAKT instances will eat
almost 1 GB. This, even before loading one instrument!

Conclusion
Well, that’s it. You made it through the KONTAKT DFD tutorial. It isn’t a light
topic, but we hope you are better informed about this mysterious KONTAKT
feature that is designed to allow you to load many times more instruments at
once than you would be able to if everything was simply loaded into RAM.

	DFD Demystified
	What is DFD?
	Theoretical background
	Illustrative example for streaming one sample
	How does this relate to DFD?
	Technical background
	The Preload Buffer
	The Channel Buffer
	How many channel buffers do we need?

	Putting it all together

	Other considerations
	Hardware Basics
	The hard drive
	Hard disk interface
	Buffer sizes
	Memory

	Last, but not least...
	Know what resources your computer has available
	Experiment with various settings
	Conclusion

