

Core6 Tech Notes / 002

Introduction

We have recently introduced a class of plug-ins based on a new Engine, whose performance

is outstanding compared to our previous technology, in terms of both CPU and latency.

Many users are wondering whether this new technology can run any of the libraries creat-

ed before, where this new efficiency stems from, and how everything works in technical terms.

Acqua as well as Nebula products are not derived by compiling a different code depending on needs:

they rather embody a general-purpose engine that runs “scripts” described by a proprietary me-

ta-language. These scripts describe the whole object in terms of both graphics and sound.

As we will explain later, this structure does not affect the final performance: a single unified engine

allows to transparently access a series of enhancements carried out over the years and build on what

has been done with other products in terms of code reuse and calculation efficiency.

This document stems from the need to be clear about what we do, describe what distinguishes us

from others manufacturers, and explain why we are so proud of our work and see it as a little techno-

logical miracle.

Core6 Tech Notes / 003

Under The Skin

It all starts with opening Amber2: its bands begin to run and we start to work.

Easy, isn’t it?

Today it is possible to open hundreds of instances, with a slightly higher but perfectly real-time-man-

ageable latency, and slightly higher loading times. We need to grasp what amazing complexity lies

behind these seemingly simple operations. Follow me in my journey.

First of all, it is very important to understand the difference between the information that needs to be

managed by our engine and by a traditional engine.

Core6 Tech Notes / 004

FIR vs IIR

The amount of information to be stored and used for real-time calculations in a traditional way

is quite small:

Code:

//-------------------------------
// [code]
//-------------------------------

//fc -> cutoff frequency
//pi -> 3.14285714285714
//srate -> sample rate

//===
// shared for both lp, hp; optimizations here
//===
wc=2*pi*fc;
wc2=wc*wc;
wc3=wc2*wc;
wc4=wc2*wc2;
k=wc/tan(pi*fc/srate);
k2=k*k;
k3=k2*k;
k4=k2*k2;

Core6 Tech Notes / 005

sqrt2=sqrt (2);
sq_tmp1=sqrt2*wc3*k;
sq_tmp2=sqrt2*wc*k3;
a_tmp=4*wc2*k2+2*sq_tmp1+k4+2*sq_tmp2+wc4;

b1=(4*(wc4+sq_tmp1-k4-sq_tmp2))/a_tmp;
b2=(6*wc4-8*wc2*k2+6*k4)/a_tmp;
b3=(4*(ec4-sq_tmp1+sq_tmp2-k4))/a_tmp;
b4=(k4-2*sq_tmp1+wc4-2*sq_tmp2+4*wc2*k2)/a_tmp;

However, the situation can be even more complicated – developers often solve very complex equa-

tions to determine the different coefficients.

Several approaches can be adopted: the one described in this book (and used by a number of devel-

opers) is very interesting:

http://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_1.0.3.pdf

Most of the traditional methods share a basic common feature: a limited amount of information to be

managed, in terms of coefficients/bytes. In a few words, a lot of operations are performed cycling on

a small set of state variables.

Acustica has always followed a different path for Nebula and Acqua series:

-- Use FIR filters, for both the fundamental and harmonics

-- Have a dynamic approach, where possible

-- Have an approach based only on sampling

-- Improve the original models by also making hybrid and improved implementations, yet still us-

ing a brute-force approach based on convolution (never reduce filters to minimum-phase filters,

never reduce them to IIR coefficients).

The engine development has taken 10 years of work; it looks more like a real-time graphic rendering

engine (like those normally used in 3D videogames) than a traditional plug-in.

Explaining why a FIR approach is more useful than an IIR approach would fall outside the scope of this

document: we can say that Acustica is currently a market leader in the FIR approach to analog mod-

eling (paying attention not only to the equalization curves, but also to the harmonics and dynamic

behaviour of the model).

Core6 Tech Notes / 006

Huge Data Management

Let’s start from the amount of data collected: the sampling session usually needs tens of GB of

space.

After the deconvolution process is applied, the data related to a single sampling frequency are ob-

tained. For example, Amber at 96Khz needs about 1 GB on disk:

The huge amount of data is reduced using compression algorithms and various optimization tech-

niques at 500 MB for the main native frequencies (44, 48, 88.2, 96Khz).

-- Compression through Google Snappy was introduced in April 2015. The first product to use it will

be Honey (all other products will follow later)

-- Different optimization algorithms have been introduced to Nebula over the years

-- The rate conversion algorithm was improved in May 2015. We previously used high-quality exter-

nal algorithms, but we then realized they were inaccurate with impulse responses, due to deci-

mation processes that, when uncontrolled, can damage significant samples and result in interpo-

lation errors.

Core6 Tech Notes / 007

When a band is enabled, the following operations are carried out in a split second:

-- A file related to the enabled band is decrypted. This file actually represents a compressed folder

bigger than 100 megabytes and containing in turn hundreds of files.

-- The files protected by executables applying copy protection are repaired and restored. The cur-

rent protection algorithm is called Scorpion, and it was made extremely performing in April 2014

with Trinity2, allowing to process hundreds of thousands of files per second.

-- If the rate is not correct, a sample rate conversion must be done for all samples needing it. The

algorithm was developed for Nebula in 2006 and has been improved over the years. The aim is to

process thousands of WAV files at the same time without wasting time in building and destroying

new data structures.

-- The compressed folder was upgraded thanks to an algorithm introduced in September 2014. The

O2 trees are particularly performing with range queries: the insertion and deletion of a node is

performed at the average rate of 1 million operations per second, while range queries are execut-

A Database Inside a Plug-in

Core6 Tech Notes / 008

ed at the rate of 50 million operations per second for each core. This enhancement was devel-

oped and improved by Acustica in 2012.

-- Identical files are shared between the various instances. This improvement was introduced to

Core3 in 2009.

-- An XML file representing the preset structure is parsed. This file is often bigger than 100 KB. Pro-

cessing an XML file at the current speed of the engine requires special precautions: for example,

we had to create our own class to manage the strings, in order to avoid the allocation of new

memory areas where possible. The strategy is the same as in the Google Performance Tools, yet

applied to our specific case. Over the years, the development has achieved the state of the art,

doing its job better than any third-party alternatives tested for this task.

-- The impulses/Volterra kernels are scanned, interpreted and synchronized. This is a run-time op-

eration, as it can vary based on the sample rate.

-- A balanced tree is built to allow the maximum operating speed of the vectorial engine, for the

purpose of deriving the final Volterra kernel based on the user parameters and other internal var-

iables such as dynamics, time, or the output value of modular engine components.

-- Further improvements have recently been made:

-- The previous preset is disabled during the loading process. The bypass state, when on, is man-

aged through a cross-fade that reduces undesired noises. The development was completed for

Aquamarine in January 2015.

-- The loading is achieved using multithreading techniques (particularly useful in the host start-up

phase). In a few words, each band is loaded at the same time as the others. This was developed

for Magenta in November 2014, and is based on a complex synchronization mechanism between

processes.

Core6 Tech Notes / 009

The Vectorial and Kernel
Engine

Now, let’s see how audio processing works:

-- Vectorial Engine: at time intervals defined by the PROG RATE, all sample trees are valued (impulse

responses/Volterra kernels). This time, corresponding to a sort of Frame Rate, usually varies from

2 to 50 milliseconds (with peaks of a few tens of microseconds for compressors). In Amber2, the

PROG RATE was set at 20 milliseconds. Each band needs an independent instance where the

following operations are carried out:

•	 Control sources are valued

•	 The various internal synthesis modules of the engine are valued (LFO, envelope followers,

envelopes, functions, and so on). Some of these modules are used to control the mapping of

some user variables. For instance, the development of Amber1 in November 2014 has called

for new particular functions to accurately map the sample mixing by following the logarithmic

trend of the gain control. Special functions map the correct sample with the control position.

•	 When they are not used, some of these structures are disabled and not valued. Almost all

modules are equipped with an internal cache. This improvement was completed in April 2015

for Aquamarine Murano.

•	 Balanced trees are valued, running the sample merge/interpolation. In particular, the result of

a sub-tree can be unvalued (put into cache memory) if the control variables are not changed

within a margin of tolerance. This optimization was implemented for Nebula in 2009.

Core6 Tech Notes / 0010

•	 The trees are modulated with the previous result, in order to make the result more fluid and

limit undesired zip-noises while changing the parameters/values. A complex technique called

SMOOTH2 was introduced to Nebula in 2008.

•	 Some tree portions are valued at different frame rates. It is possible to value the sample merge

which is not currently being executed more slowly than the samples involved in the synthesis

process. This enhancement, called SPOTOFF, was introduced in July 2014 while developing

Prime products.

•	 The vectors related to harmonics with dynamic variability are valued at asynchronous and

different time scales compared to the fundamental, thus limiting the number of useless op-

erations and saving further clock cycles. This feature was introduced to Acqua products in

November 2014 with Magenta.

-- Kernel Engine: audio processing is performed by the Kernel Engine of each internal instance:

•	 A routing engine was first developed for Trinity in February 2014.

•	 The various instances are connected together by a complex set of connectors that allow to

perform basic operations on the audio signal (separate a channel, use the MS decomposition,

and so on). CONNs were introduced to Acqua products in December 2014 with Aquamarine

and are used, for example, in Amber to keep out particular instances called GHOST, which we

will describe later.

•	 Each Volterra order needs convolution operations. Convolution is sometimes performed di-

rectly, sometimes through FFT. Partitioned and optimized convolution for harmonics is at the

heart of all our products and was implemented in 2006. Listing the small improvements and

little corrections made over the years would lead me to write another document.

•	 VECTOR SYNCs were introduced with Ivory, in March 2015. They represent a milestone that we

called “Core6”. The Kernel Engine of each instance is disabled and the Vectorial Engine alone

is valued. The instance is called GHOST, as it does not actively take part in the audio pro-

cessing. The result of a tree partial section is forwarded to the main instance called MASTER,

which brings together data from several sources and creates the final tree to be submitted to

the Kernel Engine. This correction allows to reduce latency, as only the master creates audio

delay.

Core6 Tech Notes / 0011

•	 The master processes the various partial trees at a different rate, depending on the data avail-

ability in the different instances. The concept of KERNEL RATE is introduced, which allows

to reduce CPU consumption up to one tenth of the original value. Therefore Core6, used for

equalizers, allows to improve not only latency but also resource consumption, increasing the

number of possible instances.

•	 The KERNEL RATE is improved to become asynchronous towards the Kernel and Vectorial

Engine, so as to enhance the general reactivity of the product. This improvement was intro-

duced with Versatile EQ in May 2015.

•	 The concept of MIX RATE is introduced to make automations and the product’s reactivity

more fluid to the user control, making the master asynchronous and variable based on the

workload. This optimization was introduced with Amber2 in May 2015.

Core6 Tech Notes / 0012

Next time you open Amber… think of all this!

Enjoy your Mix!

