ACONDICIONAMIENTO 1

SECCIÓN 2: ACONDICIONAMIENTO ACÚSTICO

TEMA 6:

Aislamiento acústico a ruido aéreo

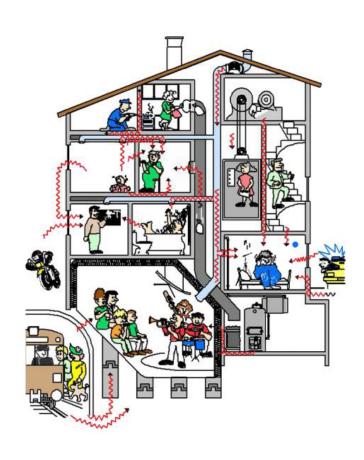
AISLAMIENTO ACÚSTICO

ACÚSTICA ARQUITECTÓNICA

Aislamiento acústico:

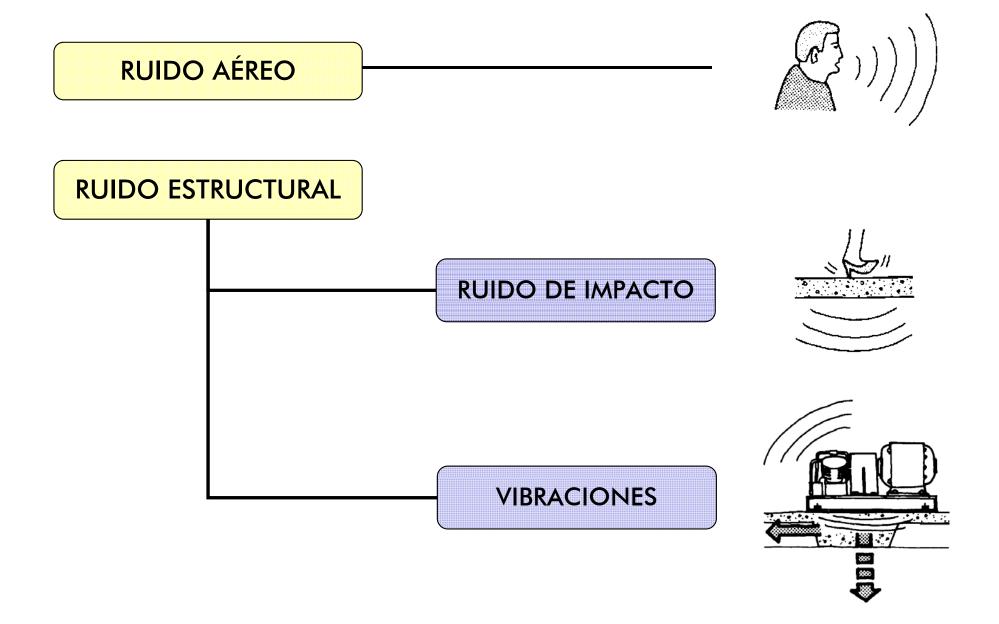
Transmisión de las ondas sonoras (niveles de ruido aéreo, de impacto y vibraciones) en los edificios.

Acústica de salas (Acondicionamiento acústico): Comportamiento del sonido en el interior de las salas y las sensaciones auditivas que en ellas se producen.

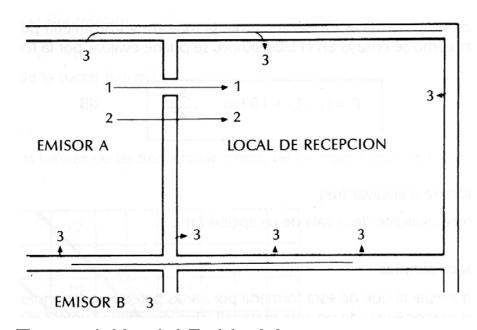

Acústica Urbanística:

Protección frente a ruido de las distintas zonas urbanas en función del uso.

NORMATIVA Y LEGISLACIÓN

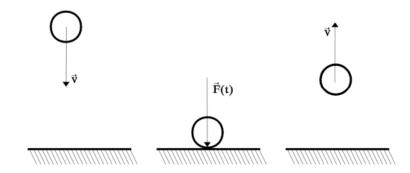

- **NBE CA 88** (derogada)
- Código Técnico de la Edificación (CTE DB HR)
- Directiva europea (2002/49/CE)
- Ley del Ruido (Ley 37/2003 de 17 de Noviembre)
- Reglamento de Protección contra la Contaminación Acústica (Decreto 6/2012, de 17 de enero)
- Ordenanzas Municipales

FUENTES DE RUIDO

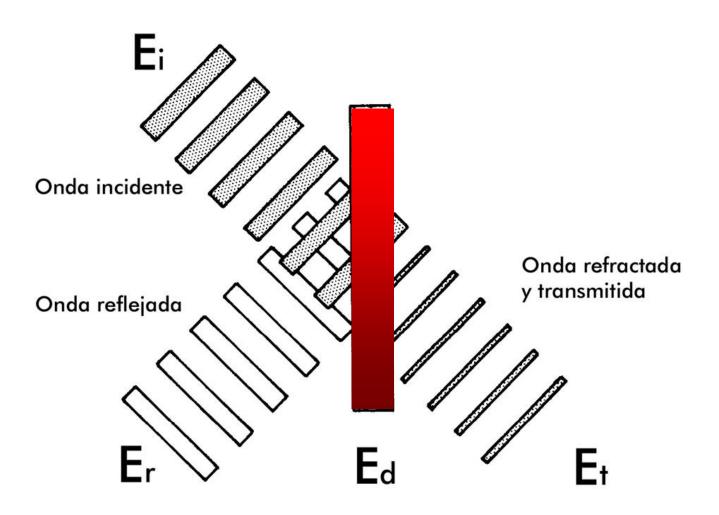


INTERIORES		
INSTALA- CIONES	Fontanería	
	Salubridad	
	Calefacción	
	Ventilación y climatización	
	Eléctricas	
	Transporte vertical	
	Aparatos electrodomésticos	
ACTIVIDADES DE LAS PERSONAS	Pisadas	
	Conversaciones	
	Equipos de reproducción sonora	
	Instrumentos musicales	
	Obras de acondicionamiento y	
	reforma	
	Otros ruidos domésticos	
EXTERIORES		
	Vehículos automóviles	
	Aviones	
	Trenes	
	Actividades industriales	
	Actividades urbanas comunitarias	
	Agentes atmosféricos	

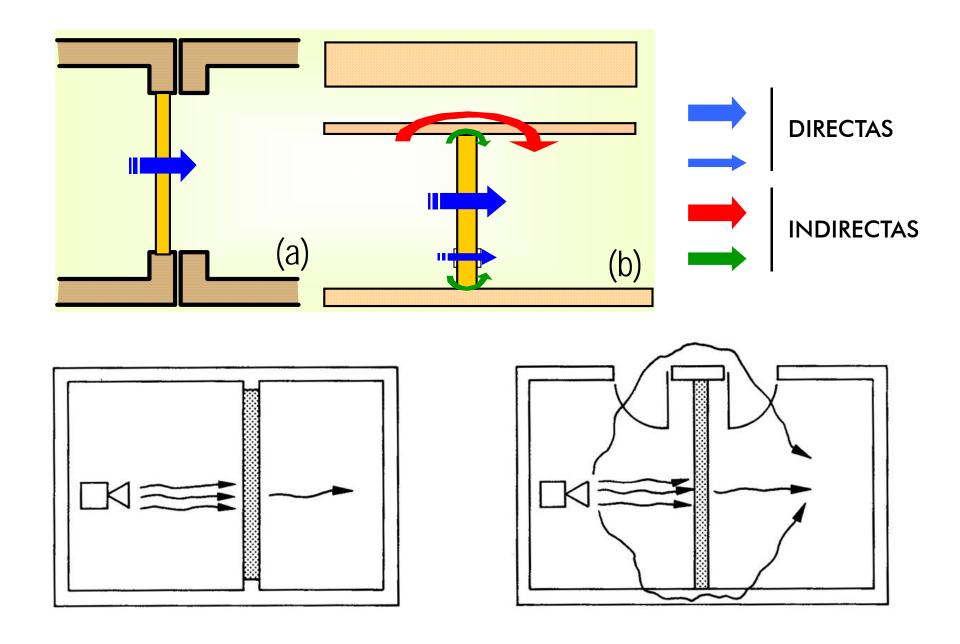
CLASIFICACIÓN DE LOS RUIDOS



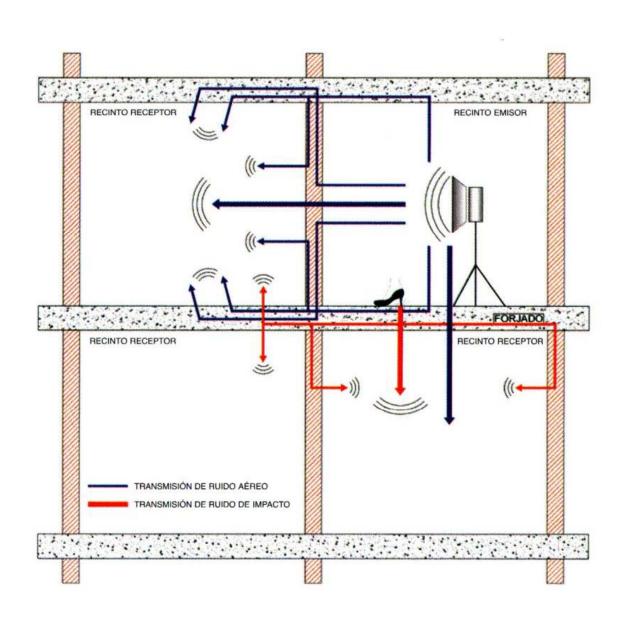
CLASIFICACIÓN DE LOS RUIDOS

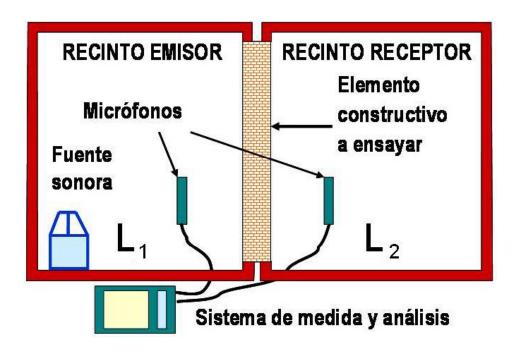

Transmisión del Ruido Aéreo

Transmisión de Vibraciones



Transmisión del Ruido de Impacto


REFLEXION ABSORCION TRANSMISION


TRANSMISIONES DE RUIDO DIRECTAS E INDIRECTAS

TRANSMISIONES DE RUIDO DIRECTAS E INDIRECTAS

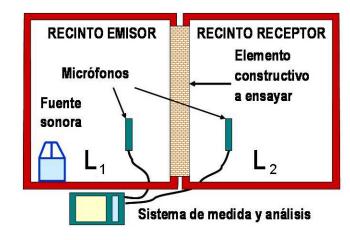
INDICADORES DE AISLAMIENTO

- S: Superficie del elemento constructivo a ensayar (m²)
- A: Absorción sonora del local receptor $(m^2) = 0'161 \text{ V/T}$
- T: Tiempo de reverberación del recinto receptor (s)
- V: Volumen del recinto receptor (m³)
- L_1 : nivel medio de presión sonora en el recinto emisor (dB)
- L_2 : nivel medio de presión sonora en el recinto receptor (dB)

INDICADORES DE AISLAMIENTO

ÍNDICE DE REDUCCIÓN ACÚSTICA DE UN ELEMENTO CONSTRUCTIVO: R (dB)

$$R = L_1 - L_2 + 10 \cdot \lg \frac{S}{A} \qquad [dB]$$



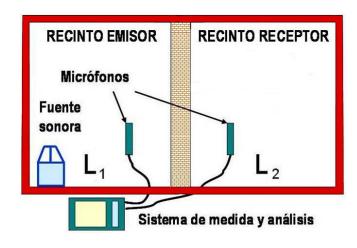
L₁ nivel medio de presión sonora en el *recinto* emisor, [dB];

L₂ nivel medio de presión sonora en el *recinto* receptor, [dB];

S área del elemento constructivo, [m²];

A área de absorción acústica equivalente del *recinto* receptor, [m²].

Índice de reducción acústica de un elemento constructivo, R: Aislamiento acústico, en dB, de un elemento constructivo **medido en laboratorio** (Norma UNE EN ISO 140-3). Es función de la frecuencia.


INDICADORES DE AISLAMIENTO

DIFERENCIA DE NIVELES ESTANDARIZADA ENTRE RECINTOS INTERIORES: D_{nT} (dB)

$$D_{nT} = L_1 - L_2 + 10 \cdot lg \frac{T}{T_0}$$
 [dB]

siendo

- L₁ nivel medio de presión sonora en el recinto emisor, [dB];
- L₂ nivel medio de presión sonora en el recinto receptor, [dB];
- T tiempo de reverberación del recinto receptor, [s];
- T_0 tiempo de reverberación de referencia; su valor es T_0 =0,5 s.

Diferencia de niveles estandarizada entre recintos interiores, D_{nT} : Diferencia entre los niveles medios de presión sonora producidos en dos recintos por una o varias fuentes de ruido emitiendo en uno de ellos, normalizada al valor 0,5 s del tiempo de reverberación. En general es función de la frecuencia.

INDICADORES DE AISLAMIENTO

AISLAMIENTOS ACÚSTICOS GLOBALES A RUIDO AÉREO (Subíndice W) UNE EN ISO 717-1

 $R_w y D_{nTw}$

UNE-EN ISO 717: Evaluación del aislamiento acústico en los edificios y de los elementos de construcción. Parte 1: Aislamiento a Ruido Aéreo.

El objetivo de la misma es normalizar un método por el cual la dependencia frecuencial del aislamiento a ruido aéreo pueda convertirse en *un solo número* que caracterice las propiedades acústicas (el comportamiento acústico). Sirve, además, para evaluar y comparar los resultados entre los distintos indicadores. Se crea la familia de indicadores con subíndice w.

INDICADORES DE AISLAMIENTO

AISLAMIENTOS ACÚSTICOS GLOBALES A RUIDO AÉREO TÉRMINOS CORRECTORES

Términos correctores de los indicadores a ruido aéreo (dB):

$$R_{w}$$
 (C; C_{tr}); $y D_{nTw}$ (C; C_{tr})

C: término de adaptación espectral para fuentes con escasez a bajas frecuencias (actividad humana, voz humana) → particiones

 C_{tr} : término de adaptación espectral para fuentes con presencia de bajas frecuencias (tráfico rodado) \rightarrow fachadas

Ejemplo: $D_{nTw}(C;C_{tr})$: 47 (-1; -4)

significa: $D_{nTw} = 47 dB$

Partición: $D_{nTw}+C = 46 dB$

Fachada: $D_{nTw}+C_{tr}=43 dB$

INDICADORES DE AISLAMIENTO

AISLAMIENTOS ACÚSTICOS GLOBALES A RUIDO AÉREO PONDERACIÓN A

Valoración global, ponderada A (dBA), de los distintos indicadores

INDICADORES DE AISLAMIENTO

ÍNDICE GLOBAL DE REDUCCIÓN ACÚSTICA DE UN ELEMENTO PONDERADO A: R_A (dBA)

$$m \le 150 \text{kg/m}^2$$
 $R_A = 16.6 \cdot \text{lgm} + 5$ [dBA]

$$m \ge 150 \text{kg/m}^2$$
 $R_A = 36.5 \cdot \text{lgm} - 38.5$ [dBA]

Índice global de reducción acústica, ponderado A, de un elemento constructivo, R_A : Valoración global, en dBA, del índice de reducción acústica, R, para un ruido incidente rosa normalizado, ponderado A.

Los índices de reducción acústica se determinarán mediante ensayo en laboratorio. No obstante, y <u>en ausencia de ensayo</u>, puede decirse que el índice de reducción acústica proporcionado por un <u>elemento constructivo de una hoja de materiales homogéneos</u>, es función casi exclusiva de su masa y es aplicable la ley de masa.

INDICADORES DE AISLAMIENTO

DIFERENCIA DE NIVELES ESTANDARIZADA, PONDERADA A, ENTRE RECINTOS INTERIORES: D_{nLA} (dBA)

$$D_{nT,A} = -10 \cdot lg \sum_{i=1}^{n} 10^{(L_{Ar,i} - D_{nT,i})/10}$$
 [dBA]

siendo

D_{nT,i} diferencia de niveles estandarizada en la banda de frecuencia i, [dB];

L_{Ar,i} valor del espectro normalizado del ruido rosa, ponderado A, en la banda de frecuencia i, [dBA]; i recorre todas las bandas de frecuencia de tercio de octava de 100 Hz a 5 kHz.

Diferencia de niveles estandarizada, ponderada A, entre recintos interiores, $D_{nT,A}$: Valoración global, en dBA, de la diferencia de niveles estandarizada, entre recintos interiores, D_{nT} , para ruido rosa.

INDICADORES DE AISLAMIENTO

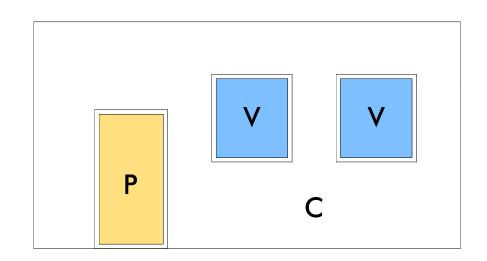
DIFERENCIA DE NIVELES ESTANDARIZADA, PONDERADA A, EN FACHADAS, CUBIERTAS Y SUELOS EN CONTACTO CON EL EXTERIOR PARA RUIDO DE AUTOMÓVILES: $D_{2m,nT,Atr}$ (dBA)

$$D_{2m,nT,Atr} = -10 \cdot lg \sum_{i=1}^{n} 10^{(L_{Atr,i} - D_{2m,nT,i})/10}$$
 [dBA]

siendo

D_{2m,nT,i} diferencia de niveles estandarizada, en la banda de frecuencia i, [dB];

L_{Atr,i} valor del espectro normalizado del ruido de automóviles, ponderado A, en la banda de frecuencia i, [dBA];


i recorre todas las bandas de frecuencia de tercio de octava de 100 Hz a 5 kHz.

Diferencia de niveles estandarizada, ponderada A, en fachadas, en cubiertas y en suelos en contacto con el aire exterior para ruido de automóviles, $D_{2m,nT,Atr}$: Valoración global, en dBA, de la diferencia de niveles estandarizada de una fachada, una cubierta, o un suelo en contacto con el aire exterior, $D_{2m,nT}$ para un ruido exterior de automóviles.

INDICADORES DE AISLAMIENTO

AISLAMIENTO ACÚSTICO DE ELEMENTOS CONSTRUCTIVOS MIXTOS

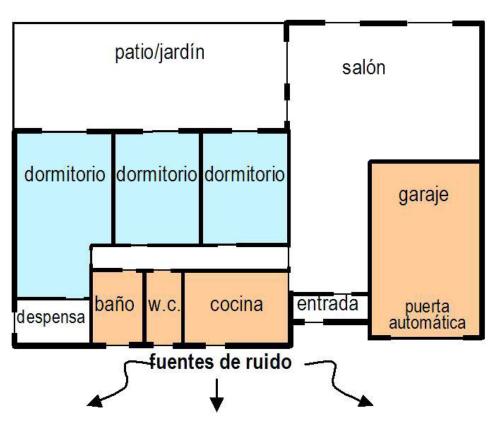
$$R_{m,A} = -10 \cdot lg \left(\sum_{j=1}^{n} \frac{S_{i}}{S} \cdot 10^{\frac{-R_{i,A}}{10}} \right) \quad \text{[dBA]}$$

siendo

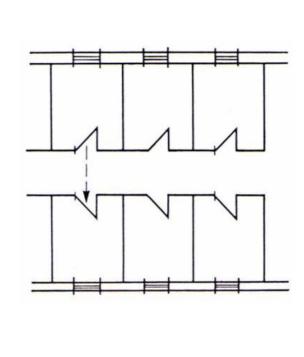
R_{m,A} índice global de reducción acústica, ponderado A, del *elemento constructivo mixto*, [dBA];

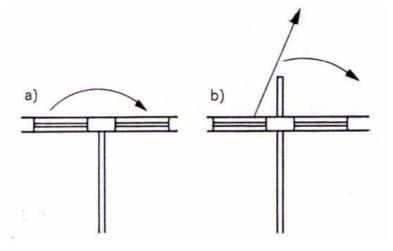
R_{i,A} índice global de reducción acústica, ponderado A, del elemento i, [dBA];

S área total del *elemento constructivo mixto*, [m²];

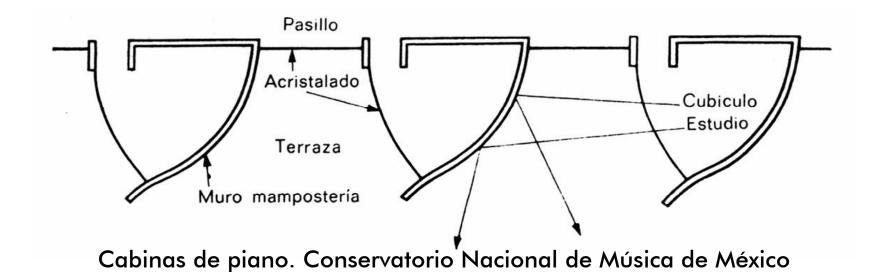

S_i área del elemento i, [m²];

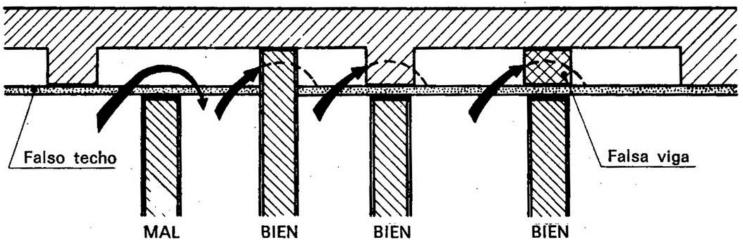
MEDIDAS PREVENTIVAS FRENTE AL RUIDO AÉREO


Medidas preventivas desde la fase de diseño:

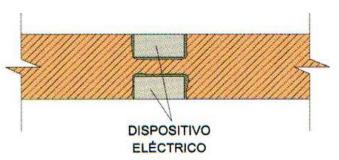

- Ordenación del territorio
- Conformación de la ciudad
- Disposición de los edificios
- Distribución del espacio interior

MEDIDAS PREVENTIVAS FRENTE AL RUIDO AÉREO

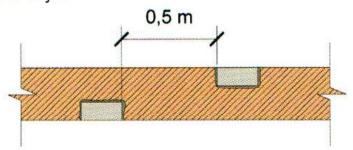



Agrupación y separación de estancias ruidosas

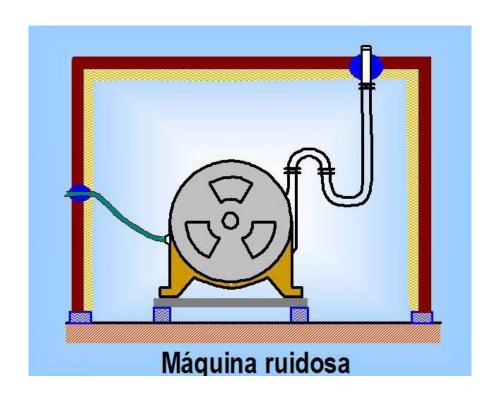
MEDIDAS PREVENTIVAS FRENTE AL RUIDO AÉREO

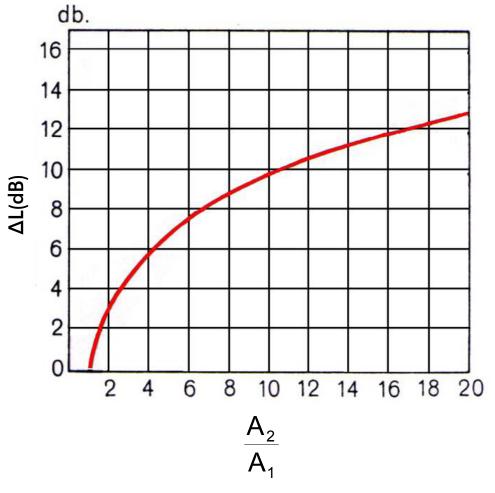


Efecto de enlaces para las transmisiones indirectas

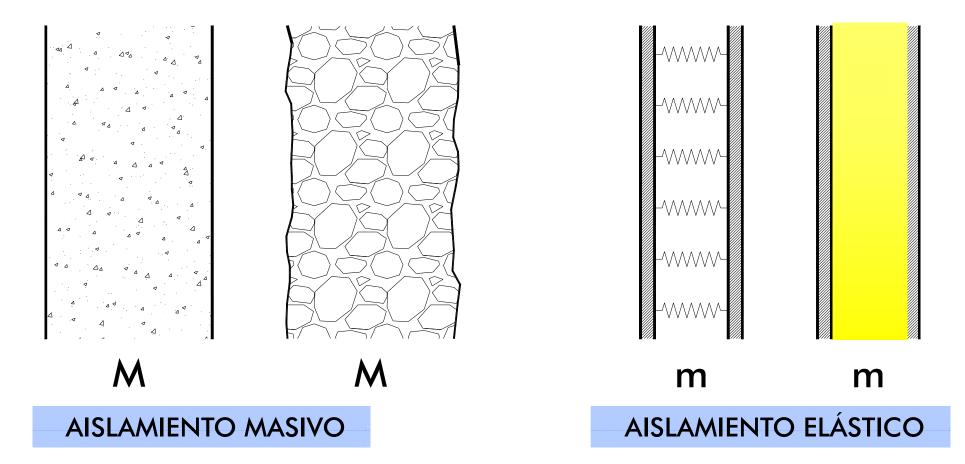

PUENTES ACÚSTICOS

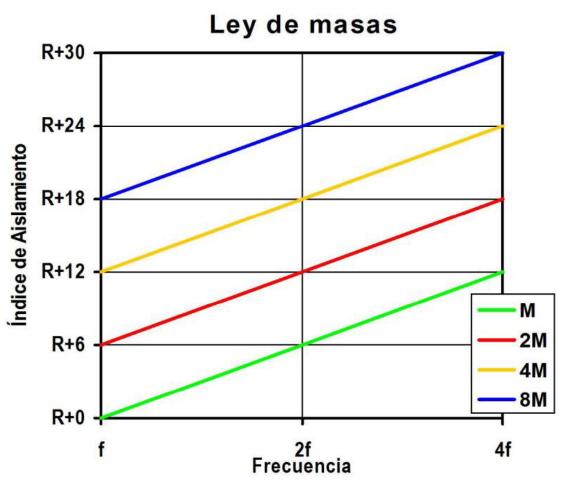
rozas mediante un macizado correcto


Mantener una distancia mínima de 50 cm entre cajas


b) Reducir las cajas con un material elástico que las aísle del material de obra, para que no exista unión solidaria entre ambos.

REDUCCIÓN DEL RUIDO DE FONDO

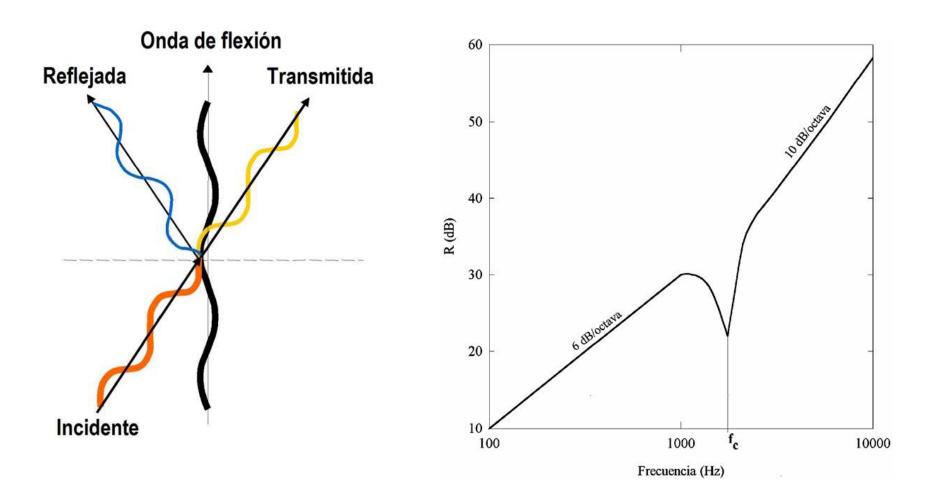



$$\Delta L (dB) = 10 \cdot log \frac{A_2}{A_1}$$

AISLAMIENTO A RUIDO AÉREO

M >> m

$$R_0 = 20 \log m \cdot f - 43 dB$$


$$R_d = R_{0} - 5 dB$$

 $m \le 150 \text{ kg/m}^2$:

$$R_A = 16'6 \log m + 5 dBA$$

 $m \ge 150 \text{ kg/m}^2$:

$$R_A = 36'5 \log m - 38'5 dBA$$

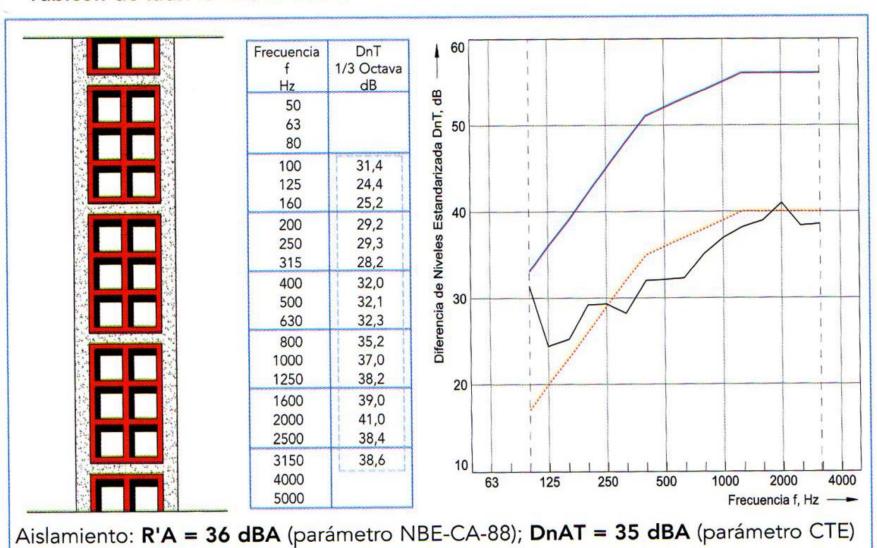
EFECTO DE COINCIDENCIA Limitaciones de la ley de masas y su influencia en la pérdida de aislamiento

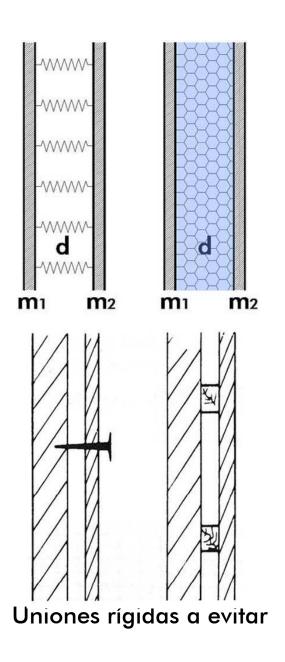
MATERIAL	DENSIDAD (kg/m³)	FRECUENCIA CRÍTICA (Hz) para 1 cm de espesor
Caucho	1000	85000
Corcho	250	18000
Poliestireno expandido	14	14000
Acero	7800	1000
Aluminio	2700	1300
Plomo	10600	8000
Vidrio	2500	1200
Ladrillo macizo	2000 a 2500	2500 a 5000
Hormigón	2300	1800
Yeso	1000	4000
Madera (abeto)	600	6000 a 18000

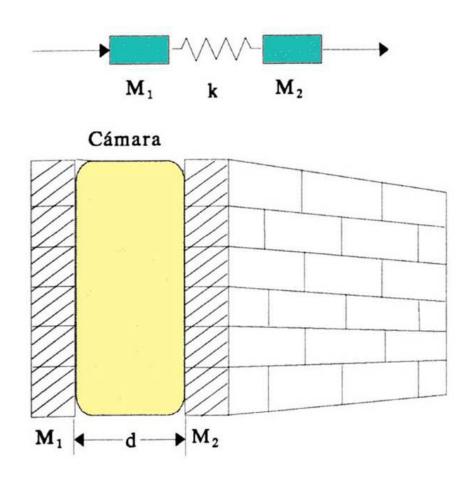
FRECUENCIAS CRÍTICAS O DE COINCIDENCIA

Para un espesor e # 1 cm: Frecuencia de coincidencia = $\frac{fc(1cm)}{e(cm)}$

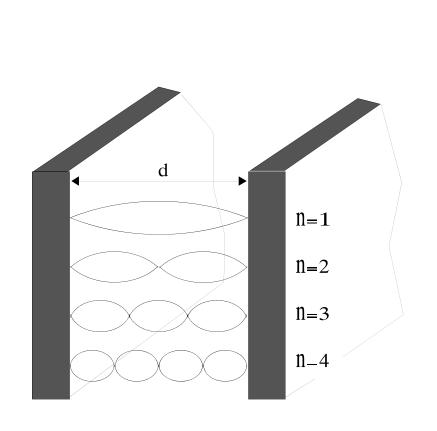
La frecuencia crítica es inversamente proporcional al espesor y la raíz cuadrada de la rigidez (materiales rígidos poseen una frecuencia crítica menor que los materiales elásticos)

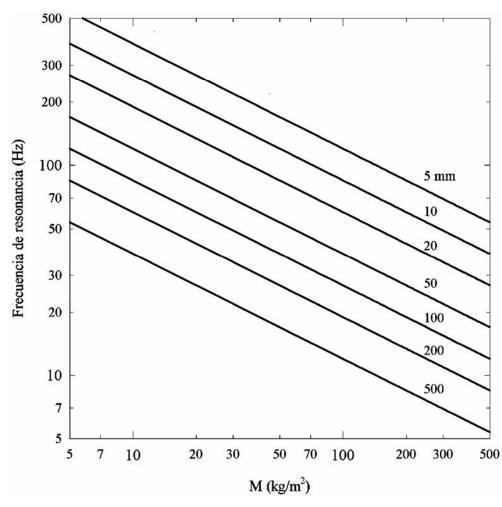

Paredes masivas: frecuencia crítica en las bajas frecuencias Citara de ladrillo macizo: $f_c = 2300/11'5 = 200 \text{ Hz}$

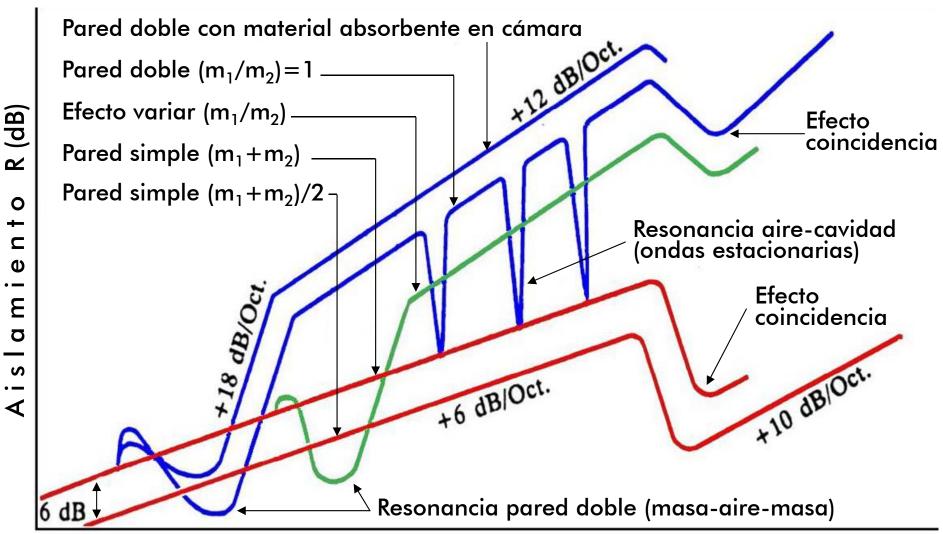

Paredes elásticas (blandas a la flexión): frecuencias críticas en las altas frecuencias


Panel de yeso laminado de 13 mm: $f_c = 4000/1'3 = 3078$ Hz Panel de yeso de 40 mm: f_c (entorno a los 1000 Hz) 3 Paneles de 13 mm: fc (entorno a los 2700-3000 Hz)

Rango de frecuencias donde no debiera estar la fc (rango de interés): 125Hz–4000 Hz (especialmente entre 250 Hz y 1000 Hz, voz humana)

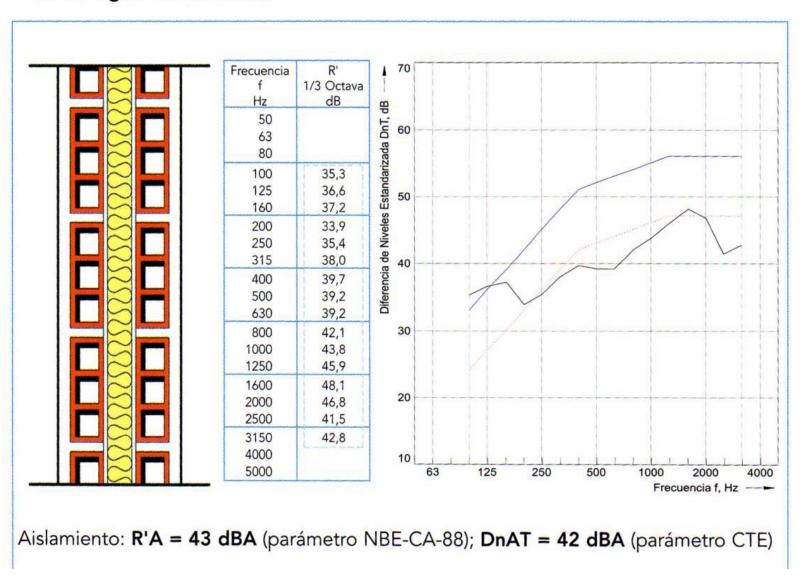

Tabicón de ladrillo hueco doble



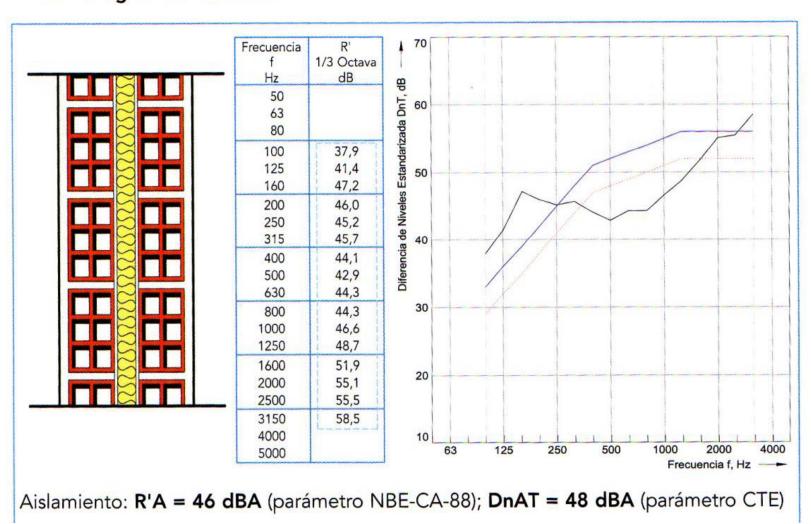

Acoplamiento entre las capas de una pared doble

Ondas estacionarias en la cavidad

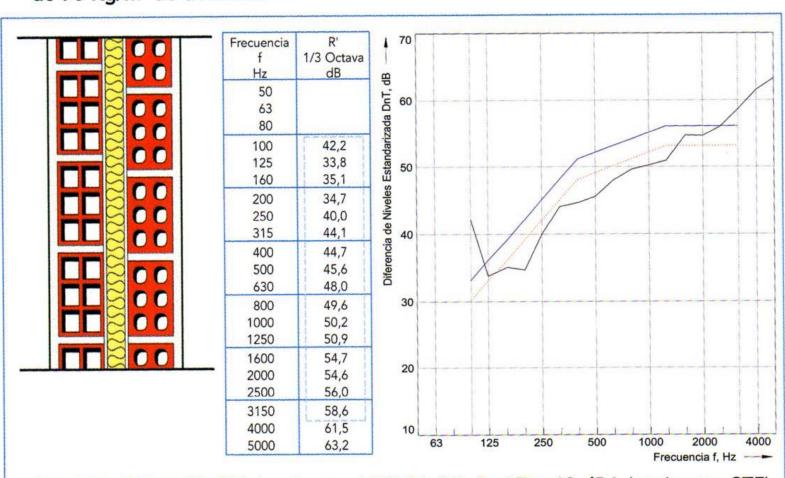
Frecuencia de resonancia de paredes dobles


Frecuencia

REPRESENTACIÓN ESQUEMÁTICA DEL COMPORTAMIENTO DE UNA PARED DOBLE

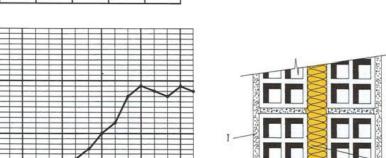

Disminución de los aislamientos acústicos de una pared doble:

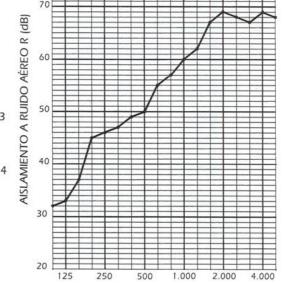
- Similitud de las frecuencias críticas y de resonancia de cada una de las hojas (a igualdad de material, cada hoja debiera tener un espesor diferente, ventajas de la combinación de hojas de ladrillo y de yeso laminado)
- Formación de ondas estacionarios en la cámara. Introducción de material absorbente acústico en la misma, que además mejora la constante elástica del dispositivo intermedio entras las dos hojas (p.e. lana mineral).
- Frecuencia de resonancia de la pared doble, que debiera estar en las bajas frecuencias (fuera del rango de las frecuencias de interés). A mayor masa de las hojas y mayor espesor de la cámara se logra bajar la frecuencia de resonancia de la pared.
- Evitar uniones rígidas (puentes acústicos).


Doble tabique de ladrillo hueco simple formando cámara de 4 cm y lana mineral de 70 Kg/m³ de densidad

Doble tabicón de ladrillo hueco doble formando cámara de 4 cm y lana mineral de 70 Kg/m³ de densidad

Sistema constructivo de ladrillo hueco doble y bloque cerámico comúnmente denominado "especial divisiones" formando cámara de 4 cm y lana mineral de 70 Kg/m³ de densidad

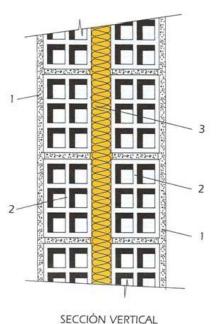


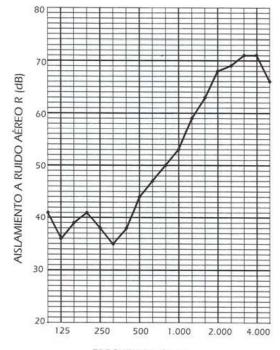

Aislamiento: R'A = 49 dBA (parámetro NBE-CA-88); DnAT = 48 dBA (parámetro CTE)

AISLAMIENTO A RUIDO AÉREO R 53,5 dB A

Este valor cumple con la norma de la edificación NBE-CA-88 en paredes separadoras de propietarios o usuarios distintos (Art. 11.°) y paredes separadoras de zonas comunes interiores (Art. 12.°)

f	125	250	500	1.000	2.000	4.000	Hz
R	33,8	45,7	51,2	59,7	68,1	68,4	dB

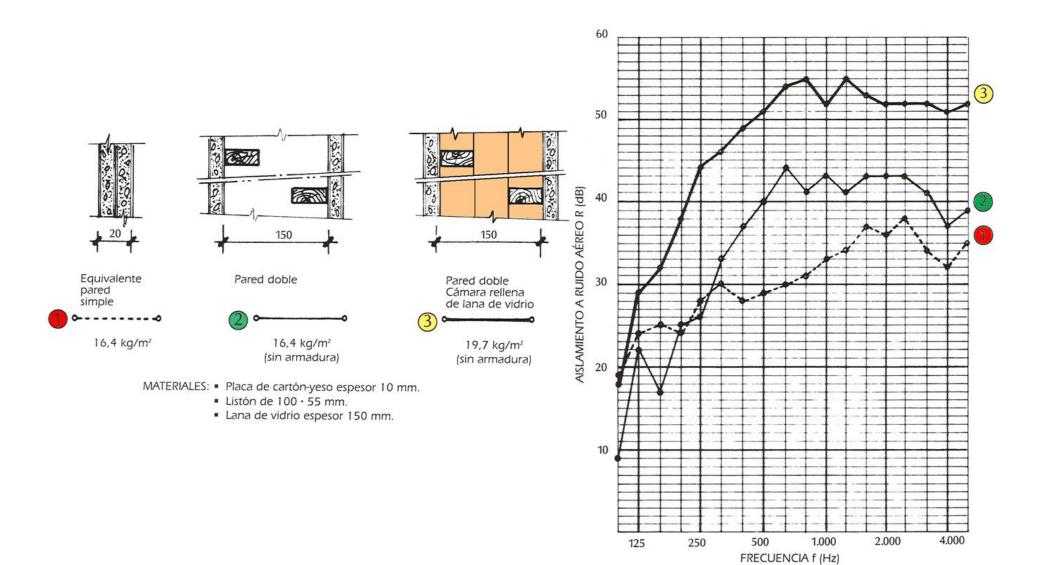



FRECUENCIA f (Hz)
Ruido de ensayo: rosa filtrado en 1/3 de octava
Filtro receptor: 1/3 de octava

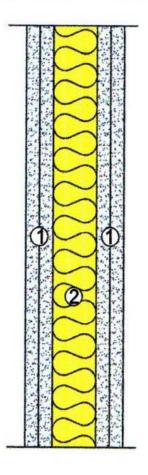
AISLAMIENTO A RUIDO AÉREO R 48 de

Este valor cumple con la norma de la edificación NBE-CA-88 en paredes separadoras de propietarios o usuarios distintos (Art. 11.º) y paredes separadoras de zonas comunes interiores (Art. 12.º)

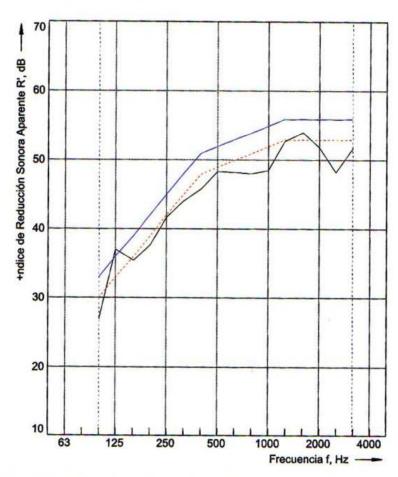
f	125	250	500	1.000	2.000	4.000	Hz
R	38,8	37,9	42,9	53,9	66,9	69	dB



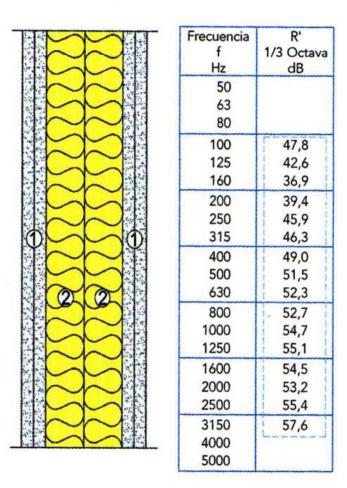
FRECUENCIA f (Hz) Ruido de ensayo: rosa filtrado en 1/3 de octava Filtro receptor: 1/3 de octava

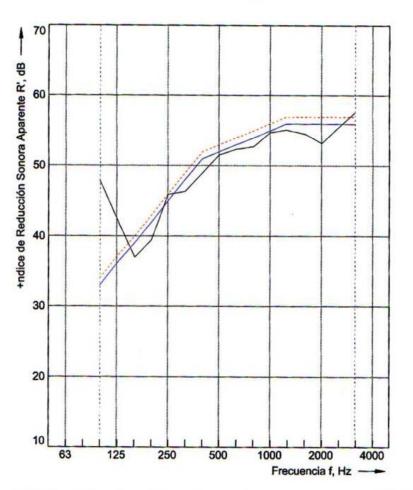

Aislamiento 40mm

SECCIÓN VERTICAL


Aislamiento 50mm

- (1) Doble placa de yeso laminado de 15 + 15 mm de espesor
- (2) Lana mineral de 70 mm de espesor y 40 Kg/m³ de densidad



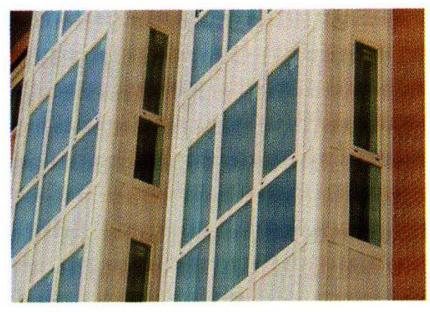

Frecuencia f Hz	R' 1/3 Octava dB		
50			
63			
80			
100	26,8		
125	37,0		
160	35,4		
200	37,6		
250	41,6		
315	44,0		
400	45,8		
500	48,3		
630	48,2		
800	48,0		
1000	48,5		
1250	52,7		
1600	54,0		
2000	51,8		
2500	48,2		
3150	51,7		
4000	the six one was the out and		
5000			

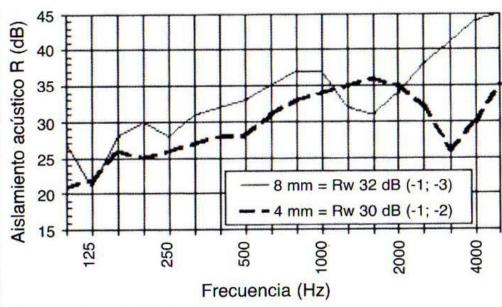
Aislamiento: R'A = 48 dBA (parámetro NBE-CA-88); DnAT = 50 dBA (parámetro CTE)

- (1) Doble placa de yeso laminado de 15 + 12,5 mm de espesor
- (2) Doble capa de lana mineral de 60 + 60 mm de espesor y 40 Kg/m³ de densidad

Aislamiento: R'A = 52 dBA (parámetro NBE-CA-88); DnAT = 51 dBA (parámetro CTE)

HUECOS ACRISTALADOS


Vidrio 1200


 f_c (vidrio monolítico de 4 mm) = 1200/0,4 = 3000 Hz

 f_c (vidrio monolítico de 6 mm) = 1200/0,6 = 2000 Hz

 f_c (vidrio monolítico de 8 mm) = 1200/0,8 = 1500 Hz

 f_c (vidrio monolítico de 10 mm) = 1200 Hz

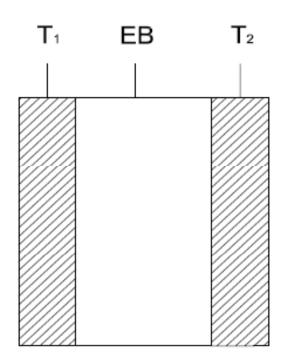
Fuente: Saint-Gobain Cristalería

Frecuencia crítica de vidrios

AISLAMIENTO A RUIDO AÉREO: HUECOS

Tipo de	Índice de reducción acústica (dB)									
vidrio	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	R. (C; C+) dB			
			Vidrios	simples						
3	14	19	25	29	33	25	28 (-1; -4)			
4	17	20	26	32	33	26	29 (-2; -3)			
5	19	22	29	33	29	31	30 (-1; -2)			
6	18	23	30	35	27	32	31 (-2; -3)			
8	20	24	29	34	29	37	32 (-2; -3)			
10	23	26	32	31	32	39	33 (-2; -3)			
12	27	29	31	32	38	47	34 (0; -2)			
		Vidrios lamin	ados (mm) + l	aminado plást	ico (0,5-1) mm					
6+	20 .	23	29	34	32	38	32 (-1; -3)			
8+	20	25	32	35	34	42	33 (-1; -3)			
10+	24	26	33	33	35	44	34 (-1; -3)			
	Vidrios dob	les con vidrios	simples o lan	ninados (mm);	cavidad de air	e (6-16) mm				
4-(6-16)-4	21	17	25	35	37	31	29 (-1; -3)			
6-(6-16)-4	21	20	26	38	37	39	32 (-2; -4)			
6-(6-16)-6	20	18	28	38	34	38	31 (-1; -4)			
8-(6-16)-4	22	21	28	38	40	47	33 (-1; -4)			
8-(6-16)-6	20	21	33	40	36	48	35 (-2; -6)			
10-(6-16)-4	24	21	32	37	42	43	35 (-2; -5)			
10-(6-16)-6	24	24	32	37	37	44	35 (-1; -3)			
6-(6-16)-6+	20	19	30	39	37	46	33 (-2; -5)			
6-(6-16)-10+	24	25	33	39	40	49	37 (-1; -5)			

TRASDOSADOS DE ELEMENTOS TIPO 1


(Fábrica u hormigón con apoyo directo)

Cálculo del R_A (dBA)

$$R_{A,EB} + \Delta R_{A,T}^{(1)}$$

$$R_{A,EB} + 1,5 \cdot \Delta R_{A,T}^{(2)}$$

$$R_{A.EB} \rightarrow Ap.4.4.1.1. y 4.4.1.2 ; $\Delta R_A \rightarrow Ap.4.4.1.3$$$

⁽¹⁾ Valores de R_A de la partición cuando sólo está trasdosada por una cara

⁽²⁾ Valores de R_A de la partición cuando se disponen trasdosados iguales por ambas caras. En caso de que una partición vertical contara con trasdosados diferentes por las dos caras, su R_A es la suma de R_{A,EB} + Δ R_{A,T1} + 0,5· Δ R_{A,T2}, donde T₂ es el trasdosado con el menor valor de Δ R_A.

TRASDOSADOS DE ELEMENTOS TIPO 1

(Fábrica u hormigón con apoyo directo)

4.4.1.1 Elemento base de una hoja

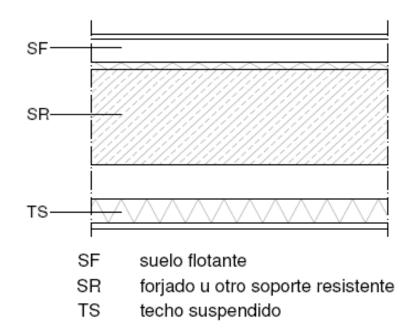
			HE ⁽⁷⁾	H	R ⁽⁸⁾
Código	Seccción	Hoja de fábrica HF	R (m²K/W)	R _A (dBA)	m (kg/m²)
P1.1 ⁽⁹⁾	RI HF RI	LH	0,21	36 [37]	89 [97]
P1.2 ⁽⁹⁾	15 70 15	LGF	0,38	33 [34]	70 [80]
P1.3	RI HF RI	LH	0,28	40 [42]	127 [160]

TRASDOSADOS DE ELEMENTOS TIPO 1

(Fábrica u hormigón con apoyo directo)

4.4.1.3 Trasdosados

Código	Seccción	e _{YL} (mm)	e _{AT} (mm)	HE ⁽³⁾ R (m ² K/W)	$HR^{(4)}$ $\Delta R_A \ [m_{el. base}]$ (dBA)
TR1	HP SPAT YL	15	50	0,21+R _{AT}	17 [70] 16 [100] 15 [140] 14 [160] 13 [180]
		2x12,5	50	0,25+R _{AT}	12 [200] 10 [250] 9 [300] 8 [350] 7 [400]


SUELOS FLOTANTES

Cálculo del R_A (dBA)

$$R_{A,SR} + \Delta R_{A,SF} + 0.5 \cdot \Delta R_{A,TS}^{(3)}$$

 $R_{A,SR} + \Delta R_{A,TS} + 0.5 \cdot \Delta R_{A,SF}^{(4)}$

Cálculo del $L_{n,w}$ (dB)

$$L_{n,w,SR}$$
 - $\Delta L_{w,SF}$ - $\Delta L_{w,TS}$

$$R_A y L_{n,w} \rightarrow Ap.3.18 ; \Delta R_A y \Delta L_W \rightarrow Ap.4.5.1. y 4.5.2.$$

 $^{^{(3)}}$ Valor de R_A correspondiente a una partición horizontal en la que el valor de Δ R_A del suelo flotante es mayor o igual que el valor de Δ R_A del techo suspendido

 $^{^{(4)}}$ Valor de R_A correspondiente a una partición horizontal en la que el valor de ΔR_A del techo suspendido es mayor que el valor de ΔR_A del suelo flotante

SUELOS FLOTANTES

4.5.1 Suelos flotantes

		Aislante a ruido	de impactos AR	HE ⁽⁷⁾	HR	
Código	Seccción	tipo	espesor	R_{SF}	ΔR_A	ΔL_{w}
			mm	(m ² K/W)	(dBA)	(dB)
			12		6 ^{(9) -} 3 ⁽¹⁰⁾	25
	AC-	MW	20	0,02+R _{AR}	8 ^{(9) -} 5 ⁽¹⁰⁾	30
			30		8 ^{(9) -} 5 ⁽¹⁰⁾	33
	M	PE	3(8)			
S01	AR————————————————————————————————————		5	0,02+R _{AR}	2 ^{(9) -} 0 ⁽¹⁰⁾	20
			10			
		EEPS	20		12 ⁽⁹⁾ - 4 ⁽¹⁰⁾	21
			30	0,02+R _{AR}	15 ⁽⁹⁾ - 4 ⁽¹⁰⁾	27
			40		19 ⁽⁹⁾ - 4 ⁽¹⁰⁾	29

 $^{^{(9)}}$ Valores de ΔR_A de un suelo flotante dispuesto sobre un forjado de masa por unidad de superficie igual o menor que 350 kg/m² Valores de ΔR_A de un suelo flotante dispuesto sobre un forjado de 350 < m \leq 500 kg/m²

SUELOS FLOTANTES

4.5.2.1 Techos suspendidos

	Seccción		oesor	HE ⁽⁶⁾	HR ⁽²⁾⁽³⁾	
Código			MW (mm)	R _{TS} (m²K/W)	ΔR _A (dBA)	ΔL _W (dB)
T01	SR C MW YL		1	0,22	5	5
			≥ 50	0,22+R _{AT}	8 ^{(4) -} 5 ⁽⁵⁾	10

⁽²⁾ Valores de ΔR_A y ΔL_w para techos suspendidos sin amortiguadores

⁽³⁾ En caso de que el techo suspendido incorpore luminarias o puntos de luz empotrados, éstos irán sujetas al techo mediante fijaciones específicas. El montaje del techo debe hacerse conforme a las normas de montaje de específicas de cada tipo de techo. Si el techo tiene trampillas para registro, éstas deben disponer de cierres herméticos que eviten el paso del aire, luz o ruido de las zonas de registro.

⁽⁴⁾ Valores de ΔR_A de un falso techo dispuesto sobre un forjado de masa por unidad de superficie igual o menor que 350 kg/m²

⁽⁵⁾ Valores de ΔR_A de un falso techo dispuesto sobre un forjado de 350 < m ≤ 500 kg/m²